Coronavirus prediction with python and ML

Coronavirus prediction with python and ML

IMPORTS

import pandas as pd
import plotly.express as px
import math
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
import plotly.graph_objects as go
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from collections import deque
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import random
import time
import os

The default version of TensorFlow in Colab will soon switch to TensorFlow 2.x.
We recommend you upgrade now or ensure your notebook will continue to use TensorFlow 1.x via the %tensorflow_version 1.x magic: more info.

LOAD dataset

from google.colab import drive
drive.mount('/content/drive')
Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
virusdata = "/content/drive/My Drive/data/2019_nCoV_data.csv"

virus_data = pd.read_csv(virusdata)
virus_data
Sno Date Province/State Country Last Update Confirmed Deaths Recovered
0 1 01/22/2020 12:00:00 Anhui China 2020-01-22 12:00:00 1.0 0.0 0.0
1 2 01/22/2020 12:00:00 Beijing China 2020-01-22 12:00:00 14.0 0.0 0.0
2 3 01/22/2020 12:00:00 Chongqing China 2020-01-22 12:00:00 6.0 0.0 0.0
3 4 01/22/2020 12:00:00 Fujian China 2020-01-22 12:00:00 1.0 0.0 0.0
4 5 01/22/2020 12:00:00 Gansu China 2020-01-22 12:00:00 0.0 0.0 0.0
... ... ... ... ... ... ... ... ...
695 696 02/03/2020 21:40:00 Boston, MA US 2020-01-02 19:43:00 1.0 0.0 0.0
696 697 02/03/2020 21:40:00 Los Angeles, CA US 2020-01-02 19:53:00 1.0 0.0 0.0
697 698 02/03/2020 21:40:00 Orange, CA US 2020-01-02 19:53:00 1.0 0.0 0.0
698 699 02/03/2020 21:40:00 Seattle, WA US 2020-01-02 19:43:00 1.0 0.0 0.0
699 700 02/03/2020 21:40:00 Tempe, AZ US 2020-01-02 19:43:00 1.0 0.0 0.0

700 rows × 8 columns

</div>

SUM ALL

Confirmed infections

import plotly.graph_objects as go
grouped_multiple = virus_data.groupby(['Date']).agg({'Confirmed': ['sum']})
grouped_multiple.columns = ['Confirmed ALL']
grouped_multiple = grouped_multiple.reset_index()
fig = go.Figure()
fig.update_layout(template='plotly_dark')
fig.add_trace(go.Scatter(x=grouped_multiple['Date'], 
                         y=grouped_multiple['Confirmed ALL'],
                         mode='lines+markers',
                         name='Deaths',
                         line=dict(color='orange', width=2)))
fig.show()

Mike Papinski
Mike Papinski Main author of Mike Papinski Lab.
comments powered by Disqus